<table>
<thead>
<tr>
<th>Project</th>
<th>AtlantOS – 633211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deliverable number</td>
<td>D10.6</td>
</tr>
<tr>
<td>Deliverable title</td>
<td>Science-Policy Briefing Paper and Event 1</td>
</tr>
<tr>
<td>Description</td>
<td>The first briefing paper summarizing work being carried-out in AtlantOS. The outcome will be presented to the stakeholders in a briefing event.</td>
</tr>
<tr>
<td>Work Package number</td>
<td>10</td>
</tr>
<tr>
<td>Work Package title</td>
<td>Engagement, Dissemination, and Communication</td>
</tr>
<tr>
<td>Lead beneficiary</td>
<td>KDM (no 9)</td>
</tr>
<tr>
<td>Lead authors</td>
<td>Jan-Stefan Fritz</td>
</tr>
<tr>
<td>Contributors</td>
<td>S. Ketelhake, M. Visbeck, A. Fischer, M. Ott, M. Mowlem, B. de Young</td>
</tr>
<tr>
<td>Submission data</td>
<td>27 June 2017</td>
</tr>
<tr>
<td>Due date</td>
<td>30 Sep 2017</td>
</tr>
<tr>
<td>Comments</td>
<td>The briefing paper was finalised with delay on 24 January 2017 due to a longer discussion about the first focus topic of the briefing paper and later on due to delayed contributions. Subsequently, the briefing paper was launched during the UN The Ocean Conference Preparatory Meeting in New York from 14-16 February 2017 during a side event entitled ‘Building partnerships for Integrated Ocean Observing and Information in support of the implementation of SDG 14’. Even though D10.6 has already been launched in February it had not been submitted as we were waiting for the official summary of the side event organiser UNESCO.</td>
</tr>
</tbody>
</table>
Summary of side event: 
Building partnerships for Integrated Ocean Observing and Information in support of the implementation of SDG 14 that took place on 14 February during the UN The Ocean Preparatory Conference in New York, USA, 14-16 February 2017.

AtlantOS (EU Horizon 2020 project) initiated together with its partners: the Global Ocean Observing System (GOOS), GODAE OceanView, the Group on Earth Observations Blue Planet and Marine Biodiversity Observation Network Initiatives, the Global Ocean Acidification Observing Network (GOA-ON), and the Intergovernmental Oceanographic Commission of UNESCO (IOC) the a side event on Building partnerships for Integrated Ocean Observing and Information in support of the implementation of SDG 14 at the UN Ocean Conference Preparatory Meeting in New York City (14-16 February 2017). The main objective of the side event was to identify and strengthen partnerships to advance the implementation of SDG 14; aiming to contribute to long-term objectives such as (i) the importance of ocean observation, products and information services regarding stocktaking and (ii) efforts to move from a loosely-coordinated set of existing ocean observing activities to an integrated system. The side event was moderated by Vladimir Ryabinin the executive secretary of the Intergovernmental Oceanographic Commission (IOC) and assistant director general of UNESCO and the format of the side event provided for introduction talks on (i) Integrated Global Ocean Observing Systems: new regional capabilities – challenges and opportunities (Albert Fischer, IOC/UNESCO), (ii) Observing information products that can support SDG 14 (Emily Smail, NOAA), (iii) Ocean Governance – information needs and challenges (Kristina Gjerdes, IUCN), (iv) Small Island Development States – regional information needs and challenges (Tommy Moore, Pacific Islands GOOS, SPREP) to stimulate the discussion which was opened with was opened with a statement about the state of the ocean and the consequent need for ocean observation by Vladimir Ryabinin and followed up by statements, questions and discussions between the audience and the panel.

The side event highlighted the need for a more systematic and fit-for-purpose concept of integrated observing in order to successfully achieve the goals of SDG 14. Currently, existing and emerging ocean observing networks of different scale contribute to the establishment of a global and coordinated ocean observing system. However, there is a strong need to enhance the efficiency and capability of all these observing networks namely by strengthening international partnership amongst the observing systems and by ensuring close collaboration with the government and civil service actors that drive requirements for fit-for-purpose ocean information for sustainable development. The stimulation of this cooperation track would foster the development of partnerships across a full value chain, providing improved quality, quantity, and accessibility of ocean observations and information. Thereby many blue-green growth opportunities could be realized through sustainable ocean economic activities and environmental protection measures.
The AtlantOS Vision – A long-term observing system in the Atlantic Ocean

Message from the Editors

Sandra Ketelhake (German Marine Research Consortium)
Jan-Stefan Fritz (German Marine Research Consortium)

AtlantOS is a large-scale research and innovation project aiming to deliver an advanced framework for the development of an integrated Atlantic Ocean Observing System that goes beyond the state-of-the-art, and leaves a legacy of sustainability after the lifetime of the project. The general vision of AtlantOS is to improve Atlantic observing to obtain an international, more sustainable, more efficient, more integrated, and fit-for-purpose ocean observing system. Ultimately, this will improve the value for money, extent, completeness, quality and ease of access to ocean data with the aim of delivering comprehensive ocean information to assess current trends and predict future scenarios.

The project is largely funded by the EU Horizon 2020 programme, but is a truly pan-Atlantic initiative with partners from Brazil, Canada, South Africa and the USA. As such, AtlantOS contributes to the Trans-Atlantic Research Alliance (Galway Initiative), the Group on Earth Observations and to the implementation of SDG14 entitled ‘Conserve and sustainably use the oceans, seas and marine resources for sustainable development’.

During the course of the project a number of Briefing Papers will be produced to summarize the key aims of and developments in AtlantOS. This first Briefing Paper highlights the AtlantOS vision. The authors include members of the AtlantOS Executive Board, who each take a look at the AtlantOS vision from slightly different perspectives. Martin Visbeck elaborates on the broader contribution of AtlantOS to understanding, using and protecting the oceans. Albert Fischer looks at the vision for AtlantOS. Matt Mowlem focuses on the technological vision for AtlantOS and Brad de Young looks at the challenges of putting the vision into practice.

We hope you enjoy this first briefing paper. For questions to this paper or suggestions for future topics, please contact us at:

atlantos@geomar.de
Sustained ocean observing in support of the implementation of SDG14

Martin Visbeck (Helmholtz Centre for Ocean Research Kiel and Coordinator of AtlantOS)

The ocean regulates global climate, provides resources such as food, materials, substances and energy. It facilitates 90% of global trade and enables recreational and cultural activities. Human development, population and economic growth together with essentially free access to ocean resources cause increased pressure on marine systems. Overfishing, unsustainable and polluting resource extraction, alteration of coastal zones and land-based ocean pollution and climate change are the most pressing issues. International cooperation is needed to enable more effective governance to ensure more sustainable use of marine resources and protection of the marine environment to safeguard equitable prosperity for current and future generations globally.

Ocean sustainability was not explicitly addressed in the United Nations Millennium Development Goals. However, during negotiations of the 2030 development agenda a growing coalition led by the Small Island Development States articulated effectively the case for a standalone ocean goal. In 2015, the UN finally adopted Sustainable Development Goal 14, entitled ‘Conserve and sustainably use the oceans, seas and marine resources for sustainable development’. As an initial step toward implementing this goal, the UN has agreed to hold a first global conference on the oceans in June 2017 in New York City. Ocean science as well as data and information are identified as key areas of focus concerning SDG14.

The EU Horizon 2020 project AtlantOS, ‘Optimising and Enhancing the Integrated Atlantic Ocean Observing System’, is improving and innovating Atlantic observing with the ambition to arrive at a more international, more sustainable, more efficient, more integrated and fit-for-purpose system. Together with the Group of Earth Observations (GEO) Blue Planet initiative, and the Global Ocean Observing System (GOOS) they jointly support the implementation of SDG14. AtlantOS and global sustained ocean observing contributes to the implementation of SDG14 by providing the ocean information needed to establish both status and pressure indicators of ‘ocean health and productivity’ that are essential to evaluate the progress against SDG14.

The strategic vision of AtlantOS

Albert Fischer, Micheal Ott (UNESCO – IOC)

The AtlantOS project is a driver in the vision of an integrated Atlantic Ocean observing system that achieves a transition from a loosely-coordinated and fragmented set of existing activities, into a system that is sustained and sustainable, efficient, and fit-for-purpose.

This system will cover the value chain from observations to use of information products by policy- and decision-makers, and includes data management, analysis and modelling, and dissemination of information and products, as well as continuous improvement of the system through technological advances and user feedback. The sustainability of the observing system is intimately linked to its fitness-for-purpose – how closely it meets the requirements of society and of science for sustained ocean observations and information.

The AtlantOS project will use a systems approach, based on the Framework for Ocean Observing (2012), to identify a common understanding of requirements across the stakeholders of Atlantic sustained ocean observing.
systems; coordinate existing observation efforts and augment them, where necessary, to fill identified gaps; integrate data streams; and make data and information widely available for societal benefit across areas as diverse as climate, operational ocean services (e.g., for industry), and ocean health.

This is an ambitious vision, and relies on developing a voluntary collaborative system, where all countries around the Atlantic Rim and all stakeholders see the value

in mutual cooperation, using commonly-agreed standards and best practices, and coordinating all of the pieces into a more valuable integrated whole. While the AtlantOS project is driven by European funding, the vision broadly includes a much wider set of partners, and seeks to build a common effort.

An initial analysis of existing requirements and observing programs has been completed and will inform innovation activities within the project and with outside partners to: better define integrated requirements; identify capacities and gaps; and understand trade-offs between the feasibility and impact of different observing networks in capturing Atlantic Ocean phenomena and delivering for scientific and operational applications. It will form a basis for further discussions about common priorities amongst AtlantOS project partners and all stakeholders, around the Atlantic basin, in a future AtlantOS integrated and sustained ocean observing system.

The vision for technology for the Atlantic

Matt Mowlem (National Oceanographic Centre)

The AtlantOS vision for technology in the Atlantic is to continue to target key capability gaps, and to maximise opportunities for improved efficiency and cost reduction for observing systems. Sensors and instrumentation are critical as they are currently a limiting factor in our capability to observe, particularly biogeochemical and biological parameters, at the required spatial and temporal scales using either new or existing ocean platforms and observing networks. To address this gap AtlantOS will roadmap optimal sensor development and integration into observing systems and also the development of future observing networks. A key gap which we address is the remote and autonomous sampling and processing of biological samples for widespread biological and (meta)genomic observations. Complimentary to this activity is the continuous improvement in data standards and reliability being undertaken by existing centres of gravity. AtlantOS will work with these initiatives to collate and develop common metrology techniques and best practice (including standards) for measurement of priority Essential Ocean Variables (EOVs). These include all aspects of the ocean environment – physical, biological and biogeochemical.

To reduce cost and increase Integrated Atlantic Ocean Observing Systems efficiency one aspect of our vision is to promote and facilitate networks and nations sharing or combining resources and infrastructure in construction, operation and maintenance of ocean observation systems. This is best enacted through international collaboration and dissemination of best practice. We are working with existing initiatives (e.g. POGO fellows) and structures in GEO (e.g. communities of practice), and GOOS (OCEATLAN, IOCARIBE, GOOS-Africa, US IOOS and EuroGOOS in particular). In the future, and through active engagement of all stakeholders, we will see ever greater synergy between the separate enterprises.

AtlantOS will draw these strands together to enable a capable, efficient and responsive technology eco-system for Atlantic observing with impact on sustained Atlantic observing and the Atlantic blue economy.
The oceans play a vital role in the global climate system and biosphere, providing crucial resources for humanity including water, food, energy and raw materials. There is therefore a compelling need to develop a sustainable, internationally-coordinated and comprehensive ocean observing system to enhance scientific understanding and to support the prediction of future scenarios to improve ocean management. AtlantOS will guide the development of an advanced, internationally elaborated, Blueprint for an Integrated Atlantic Ocean Observing System. The Blueprint process will look beyond AtlantOS to the needs and priorities of the wider communities interested in developing ocean observing. The Ocean Observing System should develop new approaches and bring together existing ocean observing activities into an efficient, and fit-for-purpose program that leaves a legacy of sustainability. The Observing System should be integrative, ambitious, multi-national, multi-sectoral and purposeful but not prescriptive. It must include capacity development and emphasize the role of resource mobilization for observation of the entire Atlantic Ocean. Each of the key characteristics of the Observing System is required for a successful and sustainable program. The System should support and encourage new partnerships between science, civil society, governments, and the private sector. AtlantOS is actively seeking interested members for this Blueprint committee now.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 633211.

An Autonomous Underwater Vehicle (AUV) used to collect data about the state of the oceans. © GEOMAR